150131.jpgդ



ز


ظץդ

English version is here.

(2019ǯ)

  1. Ѱ ѰĹʡ2019.9
    • 󡦷 عѰʡ2019.9
    • 󡦷 ؽΡ ԽѰ ʡ2019.9
    • ۡڡԽѰ ѰĹʡ2019.9
    • ֿ ޲ ԽѰ Ѱʡ2019.9
  2. Х꡼åץߥʡϢȰѰ Ѱ
  3. ظ 콤Ǥϳء׻ϳ콤
  4. ظʰѰ
  5. ز ꥭѰ ѰĹ
  6. ز ήϳطϾѰ ѰĹ
  7. ز ֵ¸ ô
  8. ز 踡ƤѰ Ѱ
  9. β꡼ǥ󥰥ץ֥ХĶƥ꡼ץ ץô

س򿦡2019ǯ١ˡ

  1. Flow, Turbulence and Combustion (Springer), Editor
  2. Mechanical Engineering Reviews (JSME), Editor
  3. Journal of Fluid Science and Technology (JSME), AJK2019 Special Issue, Guest Editor
  4. 2019 Joint ASME, JSME, KSME, Fluids Engineering Summer Conference (AJK2019), Fluid Mechanics Track, Track Chair
  5. The Second Pacific Rim Thermal Engineering Conference (PRTEC2019), Secretary General
    • PRTEC2019 ¹԰ѰĹ
    • ܵز Ǯ ʿǮزİѰ
  6. 12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12), Secretary General
  7. US-Japan Workshop on Bridging Fluid Mechanics and Data Science 2020, Organizer
  8. ܵز LAJѰ Ѱ
  9. ܵز ᥫ̤ե2020 ¹԰Ѱ Ѱ
  10. ܵز P-SCD382 ή¿ͤʵǽõüʳصѤؤαѤ˴ؤ븦ʬʲ Ѱ
  11. ܵز RC-277 ήοͲϤȼ¸¬ϢȤ˴ؤ븦ʬʲ Ѱ
  12. ܵز İ
  13. ܵز ɽ
  14. ܵز ؽѻԽ Fluids Engineering ƥޥͥ㡼
  15. ܵز бĴѰ Ѱ
  16. ܵز ׻ϳصѼԻǧѰ Ǯήϳʬ
  17. ܵز ǯWG Ѱ
  18. ܵز ǯ OS֥ץ饺ޥ奨 ʥ
  19. ܵز ɽ Ѱ
  20. ܵز ήι A-TS 05-24֥ץ饺ޥ奨
  21. ܵز ήιֱ OSή桦㸺 ʥ
  22. ܺήز ɾİʡ2019.7
  23. ήϳز
  24. ήϳز ϢȰѰ ѰĹ
  25. ήϳز ǯ OSAIήϳء ʥ
  26. ήϳزήϳإϥɥ֥å3ǡ33ϡή׼纺
  27. ͻ ESCOƿѰ Ѱʿ̳ԡ

ܾ

  • 硧ήϳءή桿ή
  • ذ̡ΡʹءˡˡTeknDǥΩ

  • 1989ǯ3Ωع ´
  • 1994ǯ3 ƥ̻ҹز ´
  • 1997ǯ6ǥΩ(KTH)ر LicentiateλTeknL
  • 2000ǯ4ǥΩ(KTH)ر βλTeknD
  • 2000ǯ9 رطϸ ƥ̻ҹ칶 βλ, ()

  • 2000ǯ10̾Ⱦʹȵѱ Ѹ Ūͻ縦̸
  • 2001ǯ4ȵ縦 ͥ륮Ѹ 裱и
  • 2003ǯ4 رطϸ ʵ칶
  • 2007ǯ4 Ǥֻ ʵزʡ
  • 2011ǯ4 ڶ ʵزʡ
  • 2015ǯ4 ʵزʡ

ô (2019ǯ)

  1. ¸3ǯQ2, Q3, Q4ô
  2. ԥ塼ߥ졼αѡ3ǯQ3)
  3. ήϳء3ǯQ3
  4. ´ȸ4ǯ
  5. ήδäȿرաѸ
  6. ϳء׻ϳ裲رѸ
  7. 긦ʽ1ǯ
  8. ̸裱ʽ2ǯ
  9. Ķ󥷥ƥ๽ˡGESLա
  10. 絬ϴĶƥ๽ˡGESL
  11. ֥᥸㡼GESLա
  12. ̸裲Ρ

ֵ̹ʤ

  • ⹻Ƶθ (⹻3ǯ), 2010ǯ-
  • Ωع ˬֵ2018ǯ6
  • 븩Ωع ϵֵʹ⹻2ǯ, 2013ǯ10, 2014ǯ10
  • ʣƥΥǥηϡر(G-COE)ա, 2012ǯ6
  • SFCʳֺ (SFC⹻1ǯ), 2008ǯ32009ǯ3
  • Ķ񸻡ͥ륮ʳ裱 (ر), 2007ǯ4

ǶʸʸꥹȤGoogle Scholar Profile

  1. K. Fukami, K. Fukagata, and K. Taira,
    "Assessment of supervised machine learning methods for fluid flows,"
    Theor. Comput. Fluid Dyn. (2020). https://doi.org/10.1007/s00162-020-00518-y
    (Preprint: arXiv:2001.09618 [physics.flu-dyn])

  2. S. Hirokawa, K. Eto, K. Fukagata, and N. Tokugawa,
    "Experimental investigation on friction drag reduction on an airfoil by passive blowing,"
    J. Fluid Sci. Technol. 15, JFST0011 (2020).

  3. M. Ohashi, Y. Morita, S. Hirokawa, K. Fukagata, and N. Tokugawa,
    "Parametric study toward optimization of blowing and suction locations for improving lift-to-drag ratio on a Clark-Y airfoil,"
    J. Fluid Sci. Technol. 15, JFST0008 (2020).

  4. Y. Nabae, K. Kawai, and K. Fukagata,
    "Prediction of drag reduction effect by streamwise traveling wave-like wall deformation in turbulent channel flow at practically high Reynolds numbers,"
    Int. J. Heat Fluid Flow 82, 108550 (2020).

  5. T. Murata, K. Fukami, and K. Fukagata,
    "Nonlinear mode decomposition with convolutional neural networks for fluid dynamics,"
    J. Fluid Mech. 882, A13 (2020).

ޤʤ

Ϣ

  • ϡ223-8522 ͻԹ̶3-14-1 ز
  • E-mail: fukagata [huh]mech.keio.ac.jp

Last-modified: 2020-03-31 () 10:37:02 (5d)
Copyright © 2007-2020 Fukagata Lab., Keio University, All rights reserved.