220328.jpg

公刊論文など


未出版のプレプリント(arXiv)

  1. T. Ishize, H. Omichi, and K. Fukagata,
    "Flow control by a hybrid use of machine learning and control theory,"
    arXiv preprint, arXiv:2311.08624 [physics.flu-dyn].

  2. R. Miura and K. Fukagata,
    "Semi-supervised machine learning model for Lagrangian flow state estimation,"
    arXiv preprint, arXiv:2311.08754 [physics.flu-dyn].

  3. H. Omichi, T. Ishize, and K. Fukagata,
    "Machine learning based dimension reduction for a stable modeling of periodic flow phenomena,"
    arXiv preprint, arXiv:2311.08765 [physics.flu-dyn].

  4. N. Moriya, K. Fukami, Y. Nabae, M. Morimoto, T. Nakamura, and K. Fukagata,
    "Inserting machine-learned virtual wall velocity for large-eddy simulation of turbulent channel flows,"
    arXiv preprint, arXiv:2106.09271 [physics.flu-dyn].

研究論文

英文

  1. Y. Nabae and K. Fukagata,
    "Theoretical and numerical analyses of turbulent plane Couette flow controlled using uniform blowing and suction,"
    Int. J. Heat Fluid Flow 106, 109286 (2024).

  2. M. Matsuo, K. Fukami, T. Nakamura, M. Morimoto, and K. Fukagata,
    "Reconstructing three-dimensional bluff body wake from sectional flow fields with convolutional neural networks,
    SN Comput. Sci. 5, 306 (2024).
    (Preprint, arXiv:2103.09020 [physics.flu-dyn])

  3. K. Fukami, K. Fukagata, and K. Taira,
    "Super-resolution analysis via machine learning: A survey for fluid flows,"
    Theor. Comput. Fluid Dyn. 37, 421–444 (2023).
    (Preprint, arXiv:2301.10937 [physics.flu-dyn])

  4. M. Atzori, F. Mallor, R. Pozuelo, K. Fukagata, R. Vinuesa, and P. Schlatter,
    "A new perspective on skin-friction contributions in adverse-pressure-gradient turbulent boundary layers,"
    Int. J. Heat Fluid Flow 101, 109117 (2023).

  5. M. Morimoto, K. Fukami, R. Maulik, R. Vinuesa, and K. Fukagata,
    "Assessments of epistemic uncertainty using Gaussian stochastic weight averaging for fluid-flow regression,"
    Physica D 440, 133454 (2022).
    (Preprint, arXiv:2109.08248 [physics.flu-dyn])

  6. Y. Nabae and K. Fukagata,
    "Drag reduction effect of streamwise traveling wave-like wall deformation with spanwise displacement variation in turbulent channel flow,"
    Flow Turbul. Combust. 109, 1175–1194 (2022).

  7. T. Nakamura and K. Fukagata,
    "Robust training approach of neural networks for fluid flow state estimations,"
    Int. J. Heat Fluid Flow 96, 108977 (2022).
    (Preprint, arXiv:2112.02751 [physics.flu-dyn])

  8. D. Hiruma, R. Onishi, K. Takahashi, and K. Fukagata,
    "Sensitivity study on storm modulation through a strategic use of consumer air conditioners,"
    Atmos. Sci. Lett. 23, e1091 (2022).

  9. S. Miura, M. Ohashi, K. Fukagata, and N. Tokugawa,
    "Drag reduction by uniform blowing on the pressure surface of an airfoil,"
    AIAA J. 60, 2241-2250 (2022).

  10. T. Nakamura, K. Fukami, and K. Fukagata,
    "Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions,"
    Sci. Rep. 12, 3726 (2022).
    (Preprint: arXiv:2105.00913 [physics.flu-dyn]).

  11. M. Morimoto, K. Fukami, K. Zhang, and K. Fukagata,
    "Generalization techniques of neural networks for fluid flow estimation,"
    Neural Comput. Appl. 34, 3647-3669 (2022).
    (Preprint: arXiv:2011.11911 [physics.flu-dyn]).

  12. Y. Morita, S. Rezaeiravesh, N. Tabatabaei, R. Vinuesa, K. Fukagata, and P. Schlatter,
    "Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems,"
    J. Comput. Phys. 449, 110788 (2022).
    (Preprint: arXiv:2101.09985 [physics.flu-dyn]).

  13. Y. Nabae and K. Fukagata,
    "Bayesian optimization of traveling wave-like wall deformation for friction drag reduction in turbulent channel flow,"
    J. Fluid Sci. Technol. 16, JFST0024 (2021).

  14. K. Fukami, K. Hasegawa, T. Nakamura, M. Morimoto, and K. Fukagata,
    "Model order reduction with neural networks: Application to laminar and turbulent flows,"
    SN Comput. Sci. 2, 467 (2021).
    (Preprint: arXiv:2011.10277 [physics.flu-dyn]).

  15. H. Seki, K. Fukagata, S. Ito, R. Okada, and T. Ouchi,
    "The effect of a high-flow nasal cannula on oxygen concentration at the surgical site: A pilot study,"
    Br. J. Anaesth. 127, E192-E195 (2021).

  16. M. Morimoto, K. Fukami, and K. Fukagata,
    "Experimental velocity data estimation for imperfect particle images using machine learning,"
    Phys. Fluids 33, 087121 (2021). Editor's pick
    (Preprint, arXiv:2005.00756 [physics.flu-dyn]).

  17. K. Fukami, T. Murata, K. Zhang, and K. Fukagata,
    "Sparse identification of nonlinear dynamics with low-dimensionalized flow representations,"
    J. Fluid Mech. 926, A10 (2021).
    (Preprint, arXiv:2010.12177 [physics.flu-dyn]).

  18. K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, and K. Taira,
    "Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning,"
    Nat. Mach. Intell. 3, 945-951 (2021).
    (Preprint, arXiv:2101.00554 [physics.flu-dyn]).

  19. M. Morimoto, K. Fukami, K. Zhang, A. G. Nair, and K. Fukagata,
    "Convolutional neural networks for fluid flow analysis: toward effective metamodeling and low dimensionalization,"
    Theor. Comput. Fluid Dyn. 35, 633-658 (2021).
    (Preprint, arXiv:2101.02535 [physics.flu-dyn]).

  20. M. Badri Ghomizad, H. Kor, and K. Fukagata,
    "A structured adaptive mesh refinement strategy with a sharp interface direct-forcing immersed boundary method for moving boundary problems,"
    J. Fluid Sci. Technol. 16, JFST0014 (2021).

  21. M. Badri Ghomizad, H. Kor, and K. Fukagata,
    "A sharp interface direct-forcing immersed boundary method using the moving least square approximation,"
    J. Fluid Sci. Technol. 16, JFST0013 (2021).

  22. M. Ohashi, K. Fukagata, and N. Tokugawa,
    "Adjoint-based sensitivity analysis for airfoil flow control aiming at lift-to-drag ratio improvement,"
    AIAA J. 59, 4437-4448 (2021).

  23. T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, and K. Fukagata,
    "Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow,"
    Phys. Fluids 33, 025116 (2021). Editor's pick
    (Preprint, arXiv:2010.13351 [physics.flu-dyn]).

  24. K. Fukami, K. Fukagata, and K. Taira,
    "Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows,"
    J. Fluid Mech. 909, A9 (2021).
    (Preprint, arXiv:2004.11566 [physics.flu-dyn]).

  25. K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata,
    "CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers,"
    Fluid Dyn. Res. 52, 065501 (2020). Highlights of 2020

  26. R. Maulik, K. Fukami, N. Ramachandra, K. Fukagata, and K. Taira,
    "Probabilistic neural networks for fluid flow surrogate modeling and data recovery,"
    Phys. Rev. Fluids 5, 104401 (2020).
    (Preprint: arXiv:2005.04271 [physics.flu-dyn]).

  27. K. Fukami, T. Nakamura, and K. Fukagata,
    "Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data,"
    Phys. Fluids 32, 095110 (2020).
    (Preprint: arXiv:2006.06977 [physics.comp-ph])
  28. S. Hirokawa, M. Ohashi, K. Eto, K. Fukagata, and N. Tokugawa,
    "Turbulent friction drag reduction on Clark-Y airfoil by passive uniform blowing,"
    AIAA J. 58, 4178-4180 (2020).

  29. R. Uekusa, A. Kawagoe, Y. Nabae, and K. Fukagata,
    "Resolvent analysis of turbulent channel flow with manipulated mean velocity profile,"
    J. Fluid Sci. Technol. 15, JFST0014 (2020).

  30. K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata,
    "Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes,"
    Theor. Comput. Fluid Dyn. 34, 367-383 (2020).
    (Preprint: arXiv:2003.07548 [physics.flu-dyn])

  31. K. Fukami, K. Fukagata, and K. Taira,
    "Assessment of supervised machine learning methods for fluid flows,"
    Theor. Comput. Fluid Dyn. 34, 497-519 (2020).
    (Preprint: arXiv:2001.09618 [physics.flu-dyn])

  32. S. Hirokawa, K. Eto, K. Fukagata, and N. Tokugawa,
    "Experimental investigation on friction drag reduction on an airfoil by passive blowing,"
    J. Fluid Sci. Technol. 15, JFST0011 (2020).

  33. M. Ohashi, Y. Morita, S. Hirokawa, K. Fukagata, and N. Tokugawa,
    "Parametric study toward optimization of blowing and suction locations for improving lift-to-drag ratio on a Clark-Y airfoil,"
    J. Fluid Sci. Technol. 15, JFST0008 (2020).

  34. Y. Nabae, K. Kawai, and K. Fukagata,
    "Prediction of drag reduction effect by streamwise traveling wave-like wall deformation in turbulent channel flow at practically high Reynolds numbers,"
    Int. J. Heat Fluid Flow 82, 108550 (2020).

  35. T. Murata, K. Fukami, and K. Fukagata,
    "Nonlinear mode decomposition with convolutional neural networks for fluid dynamics,"
    J. Fluid Mech. 882, A13 (2020).
    (Preprint: arXiv:1906.04029 [physics.comp-ph])

  36. K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata,
    "Synthetic turbulent inflow generator using machine learning,"
    Phys. Rev. Fluids 4, 064603 (2019).
    (Preprint: arXiv:1806.08903 [physics.flu-dyn])

  37. K. Fukami, K. Fukagata, and K. Taira,
    "Super-resolution reconstruction of turbulent flows with machine learning,"
    J. Fluid Mech. 870, 106-120 (2019).
    (Preprint: arXiv:1811.11328 [physics.flu-dyn])

  38. A. Kawagoe, S. Nakashima, M. Luhar, and K. Fukagata,
    "Proposal of control laws for turbulent skin-friction reduction based on resolvent analysis,"
    J. Fluid Mech. 866, 810-840 (2019).

  39. K. Eto, Y. Kondo, K. Fukagata, and N. Tokugawa,
    "Assessment of friction drag reduction on a Clark-Y airfoil by uniform blowing,"
    AIAA J. 57, 2774-2782 (2019).

  40. A. Iwata, K. Fujioka, T. Yonemichi, K. Fukagata, K. Kurosawa, R. Tabata, M. Kitagawa, T. Takashima, and T. Okuda,
    "Seasonal variation in atmospheric particle electrostatic charging states determined using a parallel electrode plate device,"
    Atmos. Environ. 203, 62-69 (2019).

  41. T. Yonemichi, K. Fukagata, K. Fujioka, and T. Okuda,
    "Numerical simulation of parallel-plate particle separator for estimation of charge distribution of PM2.5,"
    Aerosol Sci. Technol. 53, 394-405 (2019).
    (Supplemental Information: UAST_1569198_Supplemental File.pdf (12 pages))

  42. W. Hua and K. Fukagata,
    "Near-surface electron transport and its influence on the discharge structure of nanosecond-pulsed dielectric-barrier-discharge under different electrode polarities,"
    Phys. Plasmas 26, 013514 (2019).

  43. S. Nakashima, M. Luhar, and K. Fukagata,
    "Reconsideration of spanwise rotating turbulent channel flows via resolvent analysis,"
    J. Fluid Mech. 861, 200-222 (2019).

  44. H. Kor, M. Badri Ghomizad, and K. Fukagata,
    "Extension of the unified interpolation stencil for immersed boundary method for moving boundary problems,"
    J. Fluid Sci. Technol. 13, JFST0008 (2018).

  45. K. Date, K. Fukagata, and T. Ishigure,
    "Core position alignment in polymer optical waveguides fabricated using the Mosquito method,"
    Opt. Express 26, 15632-15641 (2018).

  46. W. Hua and K. Fukagata,
    "Influence of grid resolution in fluid-model simulation of nanosecond dielectric barrier discharge plasma actuator,"
    AIP Advances 8, 045209 (2018).

  47. Y. Kametani, A. Kotake, K. Fukagata, and N. Tokugawa,
    "Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows,"
    Phys. Rev. Fluids 2, 123904 (2017).

  48. E. Mori, M. Quadrio, and K. Fukagata,
    "Turbulent drag reduction by uniform blowing over a two-dimensional roughness,"
    Flow Turbul. Combust. 99, 765–785 (2017).

  49. Y. Ikeya, R. Örlü, K. Fukagata, and P. H. Alfredsson,
    "Towards a theoretical model of heat transfer for hot-wire anemometry close to solid walls,"
    Int. J. Heat Fluid Flow 68, 248-256 (2017).

  50. S. Nakashima, K. Fukagata, and M. Luhar,
    "Assessment of suboptimal control for turbulent skin friction reduction via resolvent analysis,"
    J. Fluid Mech. 828, 496-526 (2017).

  51. H. Kor, M. Badri Ghomizad, and K. Fukagata,
    "A unified interpolation stencil for ghost-cell immersed boundary method for flow around complex geometries,"
    J. Fluid Sci. Technol. 12, JFST0011 (2017).

  52. Y. Anzai, K. Fukagata, P. Meliga, E. Boujo, and F. Gallaire,
    "Numerical simulation and sensitivity analysis of a low-Reynolds-number flow around a square cylinder controlled using plasma actuators,"
    Phys. Rev. Fluids 2, 043901 (2017).

  53. K. Uchino, H. Mamori, and K. Fukagata,
    "Heat transfer in fully developed turbulent channel flow with streamwise traveling wave-like wall deformation,"
    J. Therm. Sci. Technol. 12, JTST0003 (2017).

  54. S. Watanabe, H. Mamori, and K. Fukagata,
    "Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow,"
    Fluid Dyn. Res. 49, 025501 (2017). Highlights of 2017

  55. A. Segalini, T. Nakamura, and K. Fukagata,
    "A linearized k-ε model of forest canopies and clearings,"
    Boundary-Layer Meteorol. 161, 439-460 (2016).

  56. Y. Kametani, K. Fukagata, R. Örlü, and P. Schlatter,
    "Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux,"
    J. Turbulence 17, 913-929 (2016).

  57. D. Noguchi, K. Fukagata, and N. Tokugawa,
    "Friction drag reduction of a spatially developing boundary layer using a combined uniform suction and blowing,"
    J. Fluid Sci. Technol. 11, JFST0004 (2016).

  58. Y. Iijima, K. Hosoda, K. Takemura, K. Fukagata, and K. Edamura,
    "Numerical simulation of electro-conjugate fluid flow considering electric double layer,"
    Mech. Eng. J. 2, 15-00341 (2015).

  59. Y. Kametani, K. Fukagata, R. Örlü, and P. Schlatter,
    "Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number,"
    Int. J. Heat Fluid Flow 55, 132-142 (2015).

  60. H. Bottini, M. Kurita, H. Iijima, and K. Fukagata,
    "Effects of wall temperature on skin-friction measurements by oil-film interferometry,"
    Meas. Sci. Technol. 26, 105301 (2015).

  61. H. Gejima, R. Takinami, K. Fukagata, T. Mitsumoji, T. Sueki, and M. Ikeda,
    "Suppression of vortex shedding from a pantograph head using vortex generator-type plasma actuators,"
    J. Fluid Sci. Technol. 10, JFST0006 (2015).

  62. Y. Kametani, M. Kawagoe, and K. Fukagata,
    "Direct numerical simulation of a turbulent mixing layer with a perpendicularly oscillated inflow,"
    J. Fluid Sci. Technol. 10, JFST0004 (2015).

  63. H. Naito and K. Fukagata,
    "Control of flow around a circular cylinder for minimizing energy dissipation,"
    Phys. Rev. E 90, 053008 (2014).
    Erratum: Phys. Rev. E 90, 069902(E) (2014).

  64. H. Mamori and K. Fukagata,
    "Drag reduction effect by a wave-like wall-normal body force in a turbulent channel flow,"
    Phys. Fluids 26, 115104 (2014).

  65. S. J. Illingworth, H. Naito, and K. Fukagata,
    "Active control of vortex shedding: An explanation of the gain window,"
    Phys. Rev. E 90, 043014 (2014).

  66. T. Igarashi, H. Naito, and K. Fukagata,
    "Direct numerical simulation of flow around a circular cylinder controlled using plasma actuators,"
    Math. Probl. Eng. 2014, 591807 (2014).

  67. N. Tomiyama and K. Fukagata,
    "Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation,"
    Phys. Fluids 25, 105115 (2013).

  68. K. Nakahara, M. Yamamoto, Y. Okayama, K. Yoshimura, K. Fukagata, and N. Miki,
    "A peristaltic micropump using traveling waves on a polymer membrane,"
    J. Micromech. Microeng. 23, 085024 (2013).

  69. S. Yamamoto and K. Fukagata,
    "Numerical simulation of a plasma actuator based on ion transport,"
    J. Appl. Phys. 113, 243302 (2013).

  70. H. Naito and K. Fukagata,
    "Numerical simulation of flow around a circular cylinder having porous surface,"
    Phys. Fluids 24, 117102 (2012).

  71. Y. Kametani and K. Fukagata,
    "Direct numerical simulation of spatially developing turbulent boundary layer for skin friction drag reduction by wall surface-heating or cooling,"
    J. Turbulence 13, N34, 1-20 (2012).

  72. R. Nakanishi, H. Mamori, and K. Fukagata,
    "Relaminarization of turbulent channel flow using traveling wave-like wall deformation,"
    Int. J. Heat Fluid Flow 35, 152-159 (2012).

  73. N. Kasagi, Y. Hasegawa, K. Fukagata, and K. Iwamoto,
    "Control of turbulent transport: Less friction and more heat transfer,"
    J. Heat Transfer 134, 031009 (2012).

  74. K. Higashi, H. Mamori, and K. Fukagata,
    "Simultaneous control for friction drag reduction and heat transfer augmentation by traveling wave-like blowing/suction,"
    Comput. Therm. Sci. 3, 521-530 (2011).

  75. K. Kakikura, K. Fukagata, and T. Hibiya,
    "System engineering analysis and optimization of a parabolic flight experiment for thermophysical property measurement under microgravity,"
    J. Jpn. Soc. Microgravity Appl. 28-2, S92-S99 (2011).

  76. Y. Kametani and K. Fukagata,
    "Direct numerical simulation of spatially developing turbulent boundary layer with uniform blowing or suction,"
    J. Fluid Mech. 681, 154-172 (2011).

  77. K. Fukagata, K. S. Furukawa, and T. Ushida,
    "Analysis of cell accumulation mechanism in a rotational culture system,"
    J. Mech. Med. Biol. 11, 407-421 (2011).

  78. J. Hœpffner, Y. Naka, and K. Fukagata,
    "Realizing turbulent statistics,"
    J. Fluid Mech. 676, 54-80 (2011).

  79. D. Kurashima, Y. Naka, K. Fukagata, and S. Obi,
    "Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive,"
    Int. J. Heat Fluid Flow 32, 567-574 (2011).

  80. T. Kawata, Y. Naka, K. Fukagata, and S. Obi,
    "Simultaneous measurement of velocity and fluctuating pressure in a turbulent wing-tip vortex using triple hot-film sensor and miniature total pressure probe,"
    Flow Turbul. Combust. 86, 419-437 (2011).

  81. H. Hasebe, Y. Naka, and K. Fukagata,
    "An attempt for suppression of wing-tip vortex using plasma actuators,"
    J. Fluid Sci. Technol. 6, 976-988 (2011).

  82. K. Fukagata, M. Kobayashi, and N. Kasagi,
    "On the friction drag reduction effect by a control of large-scale turbulent structures,"
    J. Fluid Sci. Technol. 5, 574-584 (2010).

  83. H. Mamori and K. Fukagata,
    "Consistent scheme for computation of Reynolds stress and turbulent kinetic energy budgets for energy-conservative finite difference method,"
    J. Comput. Sci. Technol. 4, 64-75 (2010).

  84. H. Mamori, K. Fukagata, and J. Hœpffner,
    "The phase relationship in laminar channel flow controlled by traveling wave-like blowing or suction,"
    Phys. Rev. E 81, 046304 (2010).

  85. Y. Naka, K. Tsuboi, Y. Kametani, K. Fukagata, and S. Obi,
    "Near-field development of a turbulent mixing layer periodically forced by a bimorph PVDF film actuator,"
    J. Fluid Sci. Technol. 5, 156-168 (2010).

  86. J. Hœpffner and K. Fukagata,
    "Pumping or drag reduction?"
    J. Fluid Mech. 635, 171-187 (2009).

  87. K. Fukagata, K. Sugiyama, and N. Kasagi,
    "On the lower bound of net driving power in controlled duct flows,"
    Physica D 238, 1082-1086 (2009).

  88. Y. Naka, S. Azegami, T. Kawata, K. Fukagata, and S. Obi,
    "Simultaneous measurement of velocity and pressure in a wing-tip vortex,"
    J. Fluid Sci. Technol. 4, 107-115 (2009).

  89. C. Chaktranond, K. Fukagata, and N. Kasagi,
    "Performance assessment and improvement of a split-and-recombine micromixer for immunomagnetic cell sorting,"
    J. Fluid Sci. Technol. 3, 1008-1019 (2008).

  90. K. Fukagata, S. Kern, P. Chatelain, P. Koumoutsakos, and N. Kasagi,
    "Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction,"
    J. Turbulence 9, N35, 1-17 (2008).

  91. M. Suzuki, N. Shikazono, K. Fukagata, and N. Kasagi,
    "Numerical analysis of coupled transport and reaction phenomena in an anode-supported flat-tube solid oxide fuel cell,"
    J. Power Sources 180, 29-40 (2008).

  92. K. Fukagata, N. Kasagi, P. Ua-arayaporn, and T. Himeno,
    "Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube,"
    Int. J. Heat Fluid Flow 28, 72-82 (2007).

  93. A. Mitsuishi, K. Fukagata, and N. Kasagi,
    "Near-field development of large-scale vortical structures in a controlled confined coaxial jet,"
    J. Turbul. 8, N23, 1-27 (2007).

  94. K. Fukagata, N. Kasagi, and P. Koumoutsakos,
    "A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces,"
    Phys. Fluids 18, 051703 (2006).
    Erratum: Phys. Fluids 18, 089901 (2006).

  95. K. Iwamoto, K. Fukagata, N. Kasagi, and Y. Suzuki,
    "Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers,"
    Phys. Fluids 17, 011702 (2005).

  96. K. Fukagata and N. Kasagi,
    "Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress,"
    Int. J. Heat Fluid Flow 25, 341-350 (2004).

  97. K. Fukagata, S. Zahrai, and F. H. Bark,
    "Dynamics of Brownian particles in a turbulent channel flow,"
    Heat Mass Transfer 40, 715-726 (2004).
    Errata: filefukagata-hmt04-errata.pdf

  98. K. Fukagata and N. Kasagi,
    "Drag reduction in turbulent pipe flow with feedback control applied partially to wall,"
    Int. J. Heat Fluid Flow 24, 480-490 (2003).

  99. K. Fukagata, K. Iwamoto, and N. Kasagi,
    "Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows,"
    Phys. Fluids 14, L73-L76 (2002).
    Details of derivation: filefukagata-pof02-detail.pdf

  100. K. Fukagata and N. Kasagi,
    "Highly energy-conservative finite difference method for the cylindrical coordinate system,"
    J. Comput. Phys. 181, 478-498 (2002).
    Errata: filefukagata-jcp02-errata.pdf

  101. K. Fukagata, S. Zahrai, S. Kondo, and F. H. Bark,
    "Anomalous velocity fluctuations in particulate turbulent channel flow,"
    Int. J. Multiphase Flow 27, 701-719 (2001).

  102. F. Gurniki, K. Fukagata, S. Zahrai, and F. H. Bark,
    "LES of turbulent channel flow of a binary electrolyte,"
    J. Appl. Electrochem. 30, 1335-1343 (2000).

  103. K. Fukagata, S. Zahrai, and F. H. Bark,
    "Force balance in a turbulent particulate channel flow,"
    Int. J. Multiphase Flow 24, 867-887 (1998).

和文

  1. 長谷部 仁美,中 吉嗣,深潟 康二,
    「プラズマアクチュエータを用いた翼端渦抑制の試み」,
    日本機械学会論文集B編 77, 659-671 (2011).

  2. 小林 道央,深潟 康二,笠木 伸英,
    「大規模乱流構造の制御による摩擦抵抗低減効果に関する検討」,
    日本機械学会論文集B編 75, 635-641 (2009).


解説・総説/研究紹介

英文

  1. K. Fukagata, K. Iwamoto, and Y. Hasegawa,
    "Turbulent drag reduction by streamwise traveling waves of wall-normal forcing,"
    Annu. Rev. Fluid Mech. 56, 69-90 (2024).

  2. K. Fukagata,
    "Reduced order modeling of fluid flows using convolutional neural networks,"
    J. Fluid Sci. Technol. 18, JFST0002 (2023).

  3. M. Morimoto, K. Fukami, R. Maulik, R. Vinuesa, and K. Fukagata,
    Featured Research in CFD35: "Model-form uncertainty quantification in neural-network-based fluid-flow estimation,"
    Nagare - J. Jpn. Soc. Fluid Mech. 41, 89-92 (2022).

  4. K. Fukagata,
    "Towards quantum computing of turbulence,"
    Nat. Comput. Sci. 2, 68-69 (2022).

  5. T. Mitsumoji, Y. Sato, M. Ikeda, T. Sueki, and K. Fukagata,
    "Basic study on aerodynamic noise reduction techniques for a pantograph head using plasma actuators,"
    Quarterly Report of RTRI 55, 184-189 (2014).

  6. K. Fukagata,
    "Drag reduction by wavy surfaces,"
    J. Fluid Sci. Technol. 6, 2-13 (2011).

  7. N. Kasagi, Y. Suzuki, and K. Fukagata,
    "Microelectromechanical system-based feedback control of turbulence for skin friction reduction,"
    Annu. Rev. Fluid Mech. 41, 231-251 (2009).

  8. K. Fukagata,
    "Theoretical studies on friction drag reduction control with the aid of direct numerical simulation - A review,"
    J. Comput. Fluids Eng. 13-4, 96-106 (2008).

和文

  1. 深潟 康二(分担執筆),
    「§4.7.1 CNN-AE による流れの特徴抽出とその応用」,
    「計算科学ロードマップ2023」,HPCI コンソーシアム計算科学フォーラム (2023).

  2. 深潟 康二,
    「機械学習の基礎と流体問題への応用」,
    ターボ機械 51(11), 10-16 (2023).

  3. 難波江 佑介,深潟 康二,
    "Bayesian optimization of traveling wave-like wall deformation for friction drag reduction in turbulent channel flow,"
    日本機械学会流体工学部門「今この論文/技術/研究開発が熱い!」,2023年9月号 (2023).

  4. 大道 浩志,千田 晃,石瀬 健,松尾 光昭,深潟 康二,
    〔特集〕注目研究 in CFD36:「DNSデータを用いない機械学習に基づく粒子画像流速測定法の信頼性向上」,
    ながれ 42, 83-86 (2023).

  5. 深潟 康二,
    「畳み込みニューラルネットワークを用いた流体場の低次元化と欠損情報推定」,
    日本風工学会誌 47(3), 215-220 (2022).

  6. 深潟 康二,
    「基礎的な流れ場に対する機械学習の応用」,
    日本ガスタービン学会誌 50(3), 179-184 (2022).

  7. 深潟 康二,
    「乱流の機械学習と制御」,
    フルードパワーシステム 52(6), 237-241 (2021).

  8. 深潟 康二,深見 開,
    「機械学習縮約モデルを用いた革新的流れ制御に向けて」,
    伝熱 60(253), 12-15 (2021)

  9. 深潟 康二,
    「機械学習の乱流への応用」,
    日本機械学会誌 124(1232), 10-13 (2021).

  10. 肥留間 大輔,大西 領,深潟 康二,高橋 桂子,
    〔特集〕注目研究 in 年会2020:「数値感度実験による線状降水帯の可制御性解析」,
    ながれ 39, 324-327 (2020).

  11. 難波江 佑介,深潟 康二,
    〔特集〕注目研究 in 年会2020:「ウェーブマシン状進行波制御による乱流摩擦抵抗低減効果のパラメータ依存性」,
    ながれ 39, 312-315 (2020).

  12. 中村 太一,深見 開,深潟 康二,
    〔特集〕注目研究 in 年会2020:「階層型CNNオートエンコーダを用いた流れ場の非線形モードの抽出」,
    ながれ 39, 316-319 (2020).

  13. 瀬川 武彦,深潟 康二,松野 隆,野々村 拓,
    〔特集〕もう熱くない!? まだまだ熱い!! プラズマアクチュエータ:「プラズマアクチュエータ研究の進歩」,
    ながれ 39, 192-199 (2020).

  14. 深潟 康二,深見 開,
    「機械学習を用いた乱流ビッグデータ解析に向けて」,
    計測と制御 59(8), 571-576 (2020).

  15. 森本 将生,深見 開,長谷川 一登,村田 高彬,村上 光,深潟 康二,
    〔特集〕注目研究 in CFD33:「機械学習に基づくデータ拡張によるPIV の精度向上」,
    ながれ 39, 84-87 (2020).

  16. 深見 開,深潟 康二,平 邦彦,
    「チャネル乱流における機械学習3次元超解像解析」,
    日本機械学会流体工学部門ニューズレター「流れ」,2020年2月号, Art. 4 (2020)

  17. 深見 開,深潟 康二,平 邦彦,
    〔特集〕注目研究 in 年会2019:「2次元流れ場への機械学習超解像の応用」,
    ながれ 38, 395-398 (2019).

  18. 長谷川 一登,深見 開,村田 高彬,深潟 康二,
    〔特集〕注目研究 in CFD32:「機械学習を用いた円柱周り流れのレイノルズ数依存性の予測」,
    ながれ 38, 81-84 (2019).

  19. 江藤 薫子,近藤 佑亮,深潟 康二,徳川 直子,
    「一様吹出し制御による翼面摩擦抵抗低減効果の実験的定量評価」,
    日本機械学会流体工学部門ニューズレター「流れ」,2019年3月号,Art. 3 (2019).

  20. 廣川 詩歩,江藤 薫子,近藤 佑亮,深潟 康二,徳川 直子,
    「受動吹出し制御による翼面摩擦抵抗低減の風洞実験」,
    日本機械学会流体工学部門ニューズレター「流れ」,2019年3月号,Art. 4 (2019).

  21. 岩佐 大器,難波江 佑介,深潟 康二,
    「WALEモデルを用いた円管内乱流のLESにおける格子解像度の影響」,
    日本機械学会流体工学部門ニューズレター「流れ」,2019年3月号,Art. 7 (2019).

  22. 瀬川 武彦,深潟 康二,松野 隆,野々村 拓,大西 直文,
    「プラズマアクチュエータ研究会 ~5年間の活動と今後の展望~」,
    日本機械学会流体工学部門ニューズレター「流れ」,2019年2月号,Art. 3 (2019).

  23. 深潟 康二,山本 誠,岩本 薫,長谷川 洋介,塚原 隆裕,福島 直哉,守 裕也,青木 義満,
    〔特集〕注目研究 in 年会2018:「機械学習を用いた乱流の特徴抽出手法の構築に向けて」,
    ながれ 37, 524-527 (2018).

  24. 光用 剛,池田 充,末木 健之,臼田 隆之,深潟 康二,
    「パンタグラフの空力音を低減する」,
    RRR 75, 16-19 (2018).

  25. 米道 卓音,深潟 康二,藤岡 謙太郎,奥田 知明,
    「PM2.5の帯電状態測定のための平行平板粒子分級器の数値シミュレーション」,
    日本機械学会流体工学部門ニューズレター「流れ」,2018年4月号,Art. 4 (2018).

  26. 深潟 康二,
    「摩擦抵抗低減を実現する乱流制御のモデリング」,
    ターボ機械 45, 546-554 (2017).

  27. 光用 剛,池田 充,末木 健之,佐藤 祐一,臼田 隆之,深潟 康二,
    「パンタグラフの空力騒音低減に関する最近の研究状況」,
    騒音制御 41(2) 64-67 (2017).

  28. 岩本 薫,長谷川 洋介,福島 直哉,深潟 康二,
    「積分的恒等式に基づく乱流伝熱の解析と制御」,
    伝熱 55-231, 1-8 (2016).

  29. 野々村 拓,瀬川 武彦,深潟 康二,松野 隆,清水 一男,白石 裕之,
    小特集:「プラズマアクチュエータの動向:1. はじめに」,
    プラズマ・核融合学会誌 91-10, 648-650 (2015).

  30. 深潟 康二,青野 光,藤井 孝藏,山田 俊輔,石川 仁,松野 隆,
    小特集:「プラズマアクチュエータの動向:3. 基礎的な流れ場に対する実験的・数値的研究」,
    プラズマ・核融合学会誌 91-10, 657-660 (2015).

  31. 野々村 拓,瀬川 武彦,深潟 康二,松野 隆,清水 一男,白石 裕之,
    小特集:「プラズマアクチュエータの動向:6. まとめ」,
    プラズマ・核融合学会誌 91-10, 671-673 (2015).

  32. 高木 周,古川 克子,深潟 康二,牛田 多加志,藏田 耕作,
    連載講座:「高度物理刺激と生体応答(4)-- 第3章 力学刺激による細胞応答と応用 その2 --」,
    機械の研究 67-11, 957-967 (2015).

  33. 深潟 康二,岩本 薫,笠木 伸英,
    論文賞受賞記念解説:「壁に沿う流れの摩擦抵抗に対するレイノルズ応力分布の寄与」,
    ながれ 32, 211-214 (2013).

  34. 深潟 康二,
    「流れの制御手法の分類」,
    日本機械学会誌 115, 686-687 (2012).

  35. 深潟 康二,山田 俊輔,石川 仁,
    「プラズマアクチュエータの基礎と研究動向」,
    ながれ 29, 243-250 (2010).

  36. 深潟 康二,
    竜門賞受賞記念解説:「壁に沿う流れの摩擦抵抗に対するレイノルズ応力分布の寄与」,
    ながれ 27, 199-202 (2008).

  37. 深潟 康二,光石 暁彦,笠木 伸英,
    「同軸噴流における物質混合のアクティブ制御」,
    日本機械学会流体工学部門ニューズレター「流れ」, 2006年4月号,Art. 5 (2006).

  38. 深潟 康二,
    「希薄固気二相乱流の数値シミュレーション」,
    日本流体力学会 数値流体力学部門Web会誌 11, 127-135 (2003).

  39. 笠木 伸英,鈴木 雄二,深潟 康二,
    「乱流の制御」,
    パリティ 18-2, 20-26 (2003).


書籍

  1. 古川 克子,深潟 康二,牛田 多加志,
    「旋回培養による軟骨再生」,
    細胞療法・再生医療のための培養システム(紀ノ岡・酒井 編), CMC出版(2010), pp. 120-127.

  2. 深潟 康二,
    「状態フィードバック制御」,
    乱流工学ハンドブック(笠木・河村・長野・宮内 編),朝倉書店 (2009), pp. 443-447.

  3. N. Kasagi and K. Fukagata,
    "The FIK identity and its implication for turbulent skin friction control,"
    Transition and Turbulence Control, edited by M. Gad-el-Hak and H. M. Tsai (World Scientific, Singapore, 2006), Chapter 10, pp. 297-324.


紀要/内部レポート

  1. 光用 剛, 佐藤 祐一, 池田 充, 高石 武久, 末木 健之, 深潟 康二,
    「プラズマアクチュエータによるパンタグラフ舟体の空力音低減手法の基礎検討」,
    鉄道総研報告 27-10, 11-16. (2013).

  2. K. Fukagata,
    "DNS code for turbulent channel flow," Fukagata Lab. Internal Textbook, No. FLIT-1201 (Fukagata Lab., Keio University, 2012), 76 pp. FLIT-1201.jpg

  3. K. Fukagata,
    "Development of DNS code for turbulent pipe flow,"
    THTLAB Internal Report, No. ILR-0104 (Turbulence and Heat Transfer Laboratory, The Univ. of Tokyo, 2001), 62pp.

  4. K. Fukagata and S. Zahrai,
    "Simulation of particle motion in a turbulent velocity field, part II,"
    ABB Corporate Research Technical Report 1996:107 (ABB Corporate Research, Västerås, 1996), 35pp., ISRN SECRC/B/TR-96/107E.

  5. K. Fukagata,
    "Simulation of particle motion in a turbulent velocity field, part I,"
    ABB Corporate Research Technical Report 1995:162 (ABB Corporate Research, Västerås, 1995), 20pp. ISRN SECRC/KB/TR-95/162E.


巻頭言

  1. S. Obi, K. Fukagata, M. Kameda, C. Kato, Y. Morinishi, Y. Murai, S. Watanabe, and M. Watanabe,
    "Preface (Special Issue of the AJK2019, ASME-JSME-KSME Joint Fluids Engineering Conference 2019),"
    J. Fluid Sci. Technol. 15, JFST0007 (2020).

  2. 深潟 康二,
    「エネルギー産業における機械学習への期待」,
    日本ガスタービン学会誌 47, 281 (2019).

  3. T. Yano, K. Abe, H. Ishikawa, and K. Fukagata,
    "Preface (Special Issue of the Ninth JSME-KSME Thermal and Fluids Engineering Conference (TFEC9)),"
    J. Fluid Sci. Technol. 13, JFST0011 (2018).

  4. K. Suga, K. Fukagata, K. Maruta, A. Miyara, and K. Takahashi,
    "Preface (Special Issue of the First Pacific Rim Thermal Engineering Conference (PRTEC2016))"
    J. Therm. Sci. Technol. 11, JTST0034 (2016)

  5. 後藤 彰,深潟 康二,
    「ここまで来た 流れの制御 特集号発刊に際して」,
    日本機械学会誌 115, 683 (2012).

  6. 新城 淳史,深潟 康二,松原 雅春,
    「燃焼研究の最前線 特集の企画にあたって」,
    ながれ 31, 331 (2012).

  7. 瀬川 武彦,小野 謙二,深潟 康二,
    「地球惑星科学における流体現象1 ~地球内部編~ 特集の企画にあたって」,
    ながれ 30, 291-292 (2011).

  8. 深潟 康二,森西 洋平,
    「注目研究 in CFD24 特集の企画にあたって」,
    ながれ 30, 61 (2011).

  9. M. Yamamoto, K. Fukagata, S. Obi, M. Suzuki, and M. Tanahashi,
    "Preface (Special Issue of 2nd International Workshops on Advances in Computational Mechanics -Advanced Turbulent Flow Simulation-),"
    J. Fluid Sci. Technol. 6, 1 (2011).

  10. 深潟 康二,瀬川 武彦,石川 仁,
    「熱くない!? 熱い!! プラズマアクチュエータ 特集の企画にあたって」,
    ながれ 29, 241-242 (2010).


報告記事/その他*1

  1. 深潟 康二,
    「21世紀の流体力学」,
    慶應義塾大学理工学部「学問のすゝめ」2023-6 (2023).

  2. 深潟 康二,
    「第36回数値流体力学シンポジウム報告」,
    ながれ 42, 50-51 (2023).

  3. 深潟 康二,中村 太一,
    「流れの自在な制御で省エネルギー社会を目指す/研究を通して世界とつながる」,
    「塾」2021 SUMMER,No. 311, 22 (2021).

  4. 店橋 護,深潟 康二,
    「第2回環太平洋熱工学会議(PRTEC2019)開催報告」,
    日本機械学会熱工学部門ニューズレター,No. 90, June 2020 (2020).

  5. 深潟 康二,
    「15年目を迎えたLAJ委員会」,
    日本機械学会誌 122(1202), 20-21 (2019).

  6. 深潟 康二,
    「理工学部ホームページの全面リニューアルについて」,
    慶應義塾大学 理工学部報,第67号, 6 (2018).

  7. 深潟 康二,
    「仲間として信頼する学生たちと共に研究に励む」,
    駿台予備学校「早慶大を語る」,3-4 (2018).

  8. 深潟 康二,岩本 薫,
    「熱流体力学分野の標準問題集」,
    日本機械学会誌 121(1196), 26 (2018).

  9. 丸田 薫,深潟 康二,
    「The Ninth JSME-KSME Thermal and Fluids Engineering Conference (TFEC9) 開催報告」,
    日本機械学会熱工学部門ニューズレター,No. 84, April 2018 (2018).

  10. 伊賀 由佳,石井 恵奈,大坪 綾乃,武仲 能子,梅村 篤志,深潟 康二,
    「メカジョファイル Vol. 2」,
    日本機械学会誌 121(1190), 30-32 (2018).

  11. 深潟 康二,小茂鳥 潤,
    「科目横断型特別講義(先端事例から学ぶ機械工学)-慶應義塾大学理工学部機械工学科における試み-」,
    日本機械学会誌 113, 914-916 (2010).


特許

  1. 国立開発研究法人宇宙航空研究開発機構(徳川 直子),学校法人慶應義塾(深潟 康二,近藤 佑亮,江藤 薫子,廣川 詩歩),
    「気流制御装置、航空機及び気流制御方法」,
    特願2018-029486,特開2019-142385, 特許第7012226号

*1 古いものは思い出した順に掲載します…

Last-modified: 2024-06-07 (金) 15:00:44