220328.jpg

クエゥマタハク、ハ、ノ


フ、スミネヌ、ホ・ラ・・ラ・・・ネ。ハarXiv。ヒ

  1. N. Moriya, K. Fukami, Y. Nabae, M. Morimoto, T. Nakamura, and K. Fukagata,
    "Inserting machine-learned virtual wall velocity for large-eddy simulation of turbulent channel flows,"
    arXiv preprint, arXiv:2106.09271 [physics.flu-dyn].

  2. M. Matsuo, T. Nakamura, M. Morimoto, K. Fukami, and K. Fukagata,
    "Supervised convolutional network for three-dimensional fluid data reconstruction from sectional flow fields with adaptive super-resolution assistance,"
    arXiv preprint, arXiv:2103.09020 [physics.flu-dyn].

クヲオ賺タハク

アムハク

  1. K. Fukami, K. Fukagata, and K. Taira,
    "Super-resolution analysis via machine learning: A survey for fluid flows,"
    Theor. Comput. Fluid Dyn. (to appear).
    (Preprint, arXiv:2301.10937 [physics.flu-dyn])

  2. M. Atzori, F. Mallor, R. Pozuelo, K. Fukagata, R. Vinuesa, and P. Schlatter,
    "A new perspective on skin-friction contributions in adverse-pressure-gradient turbulent boundary layers,"
    Int. J. Heat Fluid Flow 101, 109117 (2023).

  3. M. Morimoto, K. Fukami, R. Maulik, R. Vinuesa, and K. Fukagata,
    "Assessments of epistemic uncertainty using Gaussian stochastic weight averaging for fluid-flow regression,"
    Physica D 440, 133454 (2022).
    (Preprint, arXiv:2109.08248 [physics.flu-dyn])

  4. Y. Nabae and K. Fukagata,
    "Drag reduction effect of streamwise traveling wave-like wall deformation with spanwise displacement variation in turbulent channel flow,"
    Flow Turbul. Combust. 109, 1175–1194 (2022).

  5. T. Nakamura and K. Fukagata,
    "Robust training approach of neural networks for fluid flow state estimations,"
    Int. J. Heat Fluid Flow 96, 108977 (2022).
    (Preprint, arXiv:2112.02751 [physics.flu-dyn])

  6. D. Hiruma, R. Onishi, K. Takahashi, and K. Fukagata,
    "Sensitivity study on storm modulation through a strategic use of consumer air conditioners,"
    Atmos. Sci. Lett. 23, e1091 (2022).

  7. S. Miura, M. Ohashi, K. Fukagata, and N. Tokugawa,
    "Drag reduction by uniform blowing on the pressure surface of an airfoil,"
    AIAA J. 60, 2241-2250 (2022).

  8. T. Nakamura, K. Fukami, and K. Fukagata,
    "Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions,"
    Sci. Rep. 12, 3726 (2022).
    (Preprint: arXiv:2105.00913 [physics.flu-dyn]).

  9. M. Morimoto, K. Fukami, K. Zhang, and K. Fukagata,
    "Generalization techniques of neural networks for fluid flow estimation,"
    Neural Comput. Appl. 34, 3647-3669 (2022).
    (Preprint: arXiv:2011.11911 [physics.flu-dyn]).

  10. Y. Morita, S. Rezaeiravesh, N. Tabatabaei, R. Vinuesa, K. Fukagata, and P. Schlatter,
    "Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems,"
    J. Comput. Phys. 449, 110788 (2022).
    (Preprint: arXiv:2101.09985 [physics.flu-dyn]).

  11. Y. Nabae and K. Fukagata,
    "Bayesian optimization of traveling wave-like wall deformation for friction drag reduction in turbulent channel flow,"
    J. Fluid Sci. Technol. 16, JFST0024 (2021).

  12. K. Fukami, K. Hasegawa, T. Nakamura, M. Morimoto, and K. Fukagata,
    "Model order reduction with neural networks: Application to laminar and turbulent flows,"
    SN Comput. Sci. 2, 467 (2021).
    (Preprint: arXiv:2011.10277 [physics.flu-dyn]).

  13. H. Seki, K. Fukagata, S. Ito, R. Okada, and T. Ouchi,
    "The effect of a high-flow nasal cannula on oxygen concentration at the surgical site: A pilot study,"
    Br. J. Anaesth. 127, E192-E195 (2021).

  14. M. Morimoto, K. Fukami, and K. Fukagata,
    "Experimental velocity data estimation for imperfect particle images using machine learning,"
    Phys. Fluids 33, 087121 (2021). Editor's pick
    (Preprint, arXiv:2005.00756 [physics.flu-dyn]).

  15. K. Fukami, T. Murata, K. Zhang, and K. Fukagata,
    "Sparse identification of nonlinear dynamics with low-dimensionalized flow representations,"
    J. Fluid Mech. 926, A10 (2021).
    (Preprint, arXiv:2010.12177 [physics.flu-dyn]).

  16. K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, and K. Taira,
    "Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning,"
    Nat. Mach. Intell. 3, 945-951 (2021).
    (Preprint, arXiv:2101.00554 [physics.flu-dyn]).

  17. M. Morimoto, K. Fukami, K. Zhang, A. G. Nair, and K. Fukagata,
    "Convolutional neural networks for fluid flow analysis: toward effective metamodeling and low dimensionalization,"
    Theor. Comput. Fluid Dyn. 35, 633-658 (2021).
    (Preprint, arXiv:2101.02535 [physics.flu-dyn]).

  18. M. Badri Ghomizad, H. Kor, and K. Fukagata,
    "A structured adaptive mesh refinement strategy with a sharp interface direct-forcing immersed boundary method for moving boundary problems,"
    J. Fluid Sci. Technol. 16, JFST0014 (2021).

  19. M. Badri Ghomizad, H. Kor, and K. Fukagata,
    "A sharp interface direct-forcing immersed boundary method using the moving least square approximation,"
    J. Fluid Sci. Technol. 16, JFST0013 (2021).

  20. M. Ohashi, K. Fukagata, and N. Tokugawa,
    "Adjoint-based sensitivity analysis for airfoil flow control aiming at lift-to-drag ratio improvement,"
    AIAA J. 59, 4437-4448 (2021).

  21. T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, and K. Fukagata,
    "Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow,"
    Phys. Fluids 33, 025116 (2021). Editor's pick
    (Preprint, arXiv:2010.13351 [physics.flu-dyn]).

  22. K. Fukami, K. Fukagata, and K. Taira,
    "Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows,"
    J. Fluid Mech. 909, A9 (2021).
    (Preprint, arXiv:2004.11566 [physics.flu-dyn]).

  23. K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata,
    "CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers,"
    Fluid Dyn. Res. 52, 065501 (2020). Highlights of 2020

  24. R. Maulik, K. Fukami, N. Ramachandra, K. Fukagata, and K. Taira,
    "Probabilistic neural networks for fluid flow surrogate modeling and data recovery,"
    Phys. Rev. Fluids 5, 104401 (2020).
    (Preprint: arXiv:2005.04271 [physics.flu-dyn]).

  25. K. Fukami, T. Nakamura, and K. Fukagata,
    "Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data,"
    Phys. Fluids 32, 095110 (2020).
    (Preprint: arXiv:2006.06977 [physics.comp-ph])
  26. S. Hirokawa, M. Ohashi, K. Eto, K. Fukagata, and N. Tokugawa,
    "Turbulent friction drag reduction on Clark-Y airfoil by passive uniform blowing,"
    AIAA J. 58, 4178-4180 (2020).

  27. R. Uekusa, A. Kawagoe, Y. Nabae, and K. Fukagata,
    "Resolvent analysis of turbulent channel flow with manipulated mean velocity profile,"
    J. Fluid Sci. Technol. 15, JFST0014 (2020).

  28. K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata,
    "Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes,"
    Theor. Comput. Fluid Dyn. 34, 367-383 (2020).
    (Preprint: arXiv:2003.07548 [physics.flu-dyn])

  29. K. Fukami, K. Fukagata, and K. Taira,
    "Assessment of supervised machine learning methods for fluid flows,"
    Theor. Comput. Fluid Dyn. 34, 497-519 (2020).
    (Preprint: arXiv:2001.09618 [physics.flu-dyn])

  30. S. Hirokawa, K. Eto, K. Fukagata, and N. Tokugawa,
    "Experimental investigation on friction drag reduction on an airfoil by passive blowing,"
    J. Fluid Sci. Technol. 15, JFST0011 (2020).

  31. M. Ohashi, Y. Morita, S. Hirokawa, K. Fukagata, and N. Tokugawa,
    "Parametric study toward optimization of blowing and suction locations for improving lift-to-drag ratio on a Clark-Y airfoil,"
    J. Fluid Sci. Technol. 15, JFST0008 (2020).

  32. Y. Nabae, K. Kawai, and K. Fukagata,
    "Prediction of drag reduction effect by streamwise traveling wave-like wall deformation in turbulent channel flow at practically high Reynolds numbers,"
    Int. J. Heat Fluid Flow 82, 108550 (2020).

  33. T. Murata, K. Fukami, and K. Fukagata,
    "Nonlinear mode decomposition with convolutional neural networks for fluid dynamics,"
    J. Fluid Mech. 882, A13 (2020).
    (Preprint: arXiv:1906.04029 [physics.comp-ph])

  34. K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata,
    "Synthetic turbulent inflow generator using machine learning,"
    Phys. Rev. Fluids 4, 064603 (2019).
    (Preprint: arXiv:1806.08903 [physics.flu-dyn])

  35. K. Fukami, K. Fukagata, and K. Taira,
    "Super-resolution reconstruction of turbulent flows with machine learning,"
    J. Fluid Mech. 870, 106-120 (2019).
    (Preprint: arXiv:1811.11328 [physics.flu-dyn])

  36. A. Kawagoe, S. Nakashima, M. Luhar, and K. Fukagata,
    "Proposal of control laws for turbulent skin-friction reduction based on resolvent analysis,"
    J. Fluid Mech. 866, 810-840 (2019).

  37. K. Eto, Y. Kondo, K. Fukagata, and N. Tokugawa,
    "Assessment of friction drag reduction on a Clark-Y airfoil by uniform blowing,"
    AIAA J. 57, 2774-2782 (2019).

  38. A. Iwata, K. Fujioka, T. Yonemichi, K. Fukagata, K. Kurosawa, R. Tabata, M. Kitagawa, T. Takashima, and T. Okuda,
    "Seasonal variation in atmospheric particle electrostatic charging states determined using a parallel electrode plate device,"
    Atmos. Environ. 203, 62-69 (2019).

  39. T. Yonemichi, K. Fukagata, K. Fujioka, and T. Okuda,
    "Numerical simulation of parallel-plate particle separator for estimation of charge distribution of PM2.5,"
    Aerosol Sci. Technol. 53, 394-405 (2019).
    (Supplemental Information: UAST_1569198_Supplemental File.pdf (12 pages))

  40. W. Hua and K. Fukagata,
    "Near-surface electron transport and its influence on the discharge structure of nanosecond-pulsed dielectric-barrier-discharge under different electrode polarities,"
    Phys. Plasmas 26, 013514 (2019).

  41. S. Nakashima, M. Luhar, and K. Fukagata,
    "Reconsideration of spanwise rotating turbulent channel flows via resolvent analysis,"
    J. Fluid Mech. 861, 200-222 (2019).

  42. H. Kor, M. Badri Ghomizad, and K. Fukagata,
    "Extension of the unified interpolation stencil for immersed boundary method for moving boundary problems,"
    J. Fluid Sci. Technol. 13, JFST0008 (2018).

  43. K. Date, K. Fukagata, and T. Ishigure,
    "Core position alignment in polymer optical waveguides fabricated using the Mosquito method,"
    Opt. Express 26, 15632-15641 (2018).

  44. W. Hua and K. Fukagata,
    "Influence of grid resolution in fluid-model simulation of nanosecond dielectric barrier discharge plasma actuator,"
    AIP Advances 8, 045209 (2018).

  45. Y. Kametani, A. Kotake, K. Fukagata, and N. Tokugawa,
    "Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows,"
    Phys. Rev. Fluids 2, 123904 (2017).

  46. E. Mori, M. Quadrio, and K. Fukagata,
    "Turbulent drag reduction by uniform blowing over a two-dimensional roughness,"
    Flow Turbul. Combust. 99, 765–785 (2017).

  47. Y. Ikeya, R. Örlü, K. Fukagata, and P. H. Alfredsson,
    "Towards a theoretical model of heat transfer for hot-wire anemometry close to solid walls,"
    Int. J. Heat Fluid Flow 68, 248-256 (2017).

  48. S. Nakashima, K. Fukagata, and M. Luhar,
    "Assessment of suboptimal control for turbulent skin friction reduction via resolvent analysis,"
    J. Fluid Mech. 828, 496-526 (2017).

  49. H. Kor, M. Badri Ghomizad, and K. Fukagata,
    "A unified interpolation stencil for ghost-cell immersed boundary method for flow around complex geometries,"
    J. Fluid Sci. Technol. 12, JFST0011 (2017).

  50. Y. Anzai, K. Fukagata, P. Meliga, E. Boujo, and F. Gallaire,
    "Numerical simulation and sensitivity analysis of a low-Reynolds-number flow around a square cylinder controlled using plasma actuators,"
    Phys. Rev. Fluids 2, 043901 (2017).

  51. K. Uchino, H. Mamori, and K. Fukagata,
    "Heat transfer in fully developed turbulent channel flow with streamwise traveling wave-like wall deformation,"
    J. Therm. Sci. Technol. 12, JTST0003 (2017).

  52. S. Watanabe, H. Mamori, and K. Fukagata,
    "Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow,"
    Fluid Dyn. Res. 49, 025501 (2017). Highlights of 2017

  53. A. Segalini, T. Nakamura, and K. Fukagata,
    "A linearized k-ε model of forest canopies and clearings,"
    Boundary-Layer Meteorol. 161, 439-460 (2016).

  54. Y. Kametani, K. Fukagata, R. Örlü, and P. Schlatter,
    "Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux,"
    J. Turbulence 17, 913-929 (2016).

  55. D. Noguchi, K. Fukagata, and N. Tokugawa,
    "Friction drag reduction of a spatially developing boundary layer using a combined uniform suction and blowing,"
    J. Fluid Sci. Technol. 11, JFST0004 (2016).

  56. Y. Iijima, K. Hosoda, K. Takemura, K. Fukagata, and K. Edamura,
    "Numerical simulation of electro-conjugate fluid flow considering electric double layer,"
    Mech. Eng. J. 2, 15-00341 (2015).

  57. Y. Kametani, K. Fukagata, R. Örlü, and P. Schlatter,
    "Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number,"
    Int. J. Heat Fluid Flow 55, 132-142 (2015).

  58. H. Bottini, M. Kurita, H. Iijima, and K. Fukagata,
    "Effects of wall temperature on skin-friction measurements by oil-film interferometry,"
    Meas. Sci. Technol. 26, 105301 (2015).

  59. H. Gejima, R. Takinami, K. Fukagata, T. Mitsumoji, T. Sueki, and M. Ikeda,
    "Suppression of vortex shedding from a pantograph head using vortex generator-type plasma actuators,"
    J. Fluid Sci. Technol. 10, JFST0006 (2015).

  60. Y. Kametani, M. Kawagoe, and K. Fukagata,
    "Direct numerical simulation of a turbulent mixing layer with a perpendicularly oscillated inflow,"
    J. Fluid Sci. Technol. 10, JFST0004 (2015).

  61. H. Naito and K. Fukagata,
    "Control of flow around a circular cylinder for minimizing energy dissipation,"
    Phys. Rev. E 90, 053008 (2014).
    Erratum: Phys. Rev. E 90, 069902(E) (2014).

  62. H. Mamori and K. Fukagata,
    "Drag reduction effect by a wave-like wall-normal body force in a turbulent channel flow,"
    Phys. Fluids 26, 115104 (2014).

  63. S. J. Illingworth, H. Naito, and K. Fukagata,
    "Active control of vortex shedding: An explanation of the gain window,"
    Phys. Rev. E 90, 043014 (2014).

  64. T. Igarashi, H. Naito, and K. Fukagata,
    "Direct numerical simulation of flow around a circular cylinder controlled using plasma actuators,"
    Math. Probl. Eng. 2014, 591807 (2014).

  65. N. Tomiyama and K. Fukagata,
    "Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation,"
    Phys. Fluids 25, 105115 (2013).

  66. K. Nakahara, M. Yamamoto, Y. Okayama, K. Yoshimura, K. Fukagata, and N. Miki,
    "A peristaltic micropump using traveling waves on a polymer membrane,"
    J. Micromech. Microeng. 23, 085024 (2013).

  67. S. Yamamoto and K. Fukagata,
    "Numerical simulation of a plasma actuator based on ion transport,"
    J. Appl. Phys. 113, 243302 (2013).

  68. H. Naito and K. Fukagata,
    "Numerical simulation of flow around a circular cylinder having porous surface,"
    Phys. Fluids 24, 117102 (2012).

  69. Y. Kametani and K. Fukagata,
    "Direct numerical simulation of spatially developing turbulent boundary layer for skin friction drag reduction by wall surface-heating or cooling,"
    J. Turbulence 13, N34, 1-20 (2012).

  70. R. Nakanishi, H. Mamori, and K. Fukagata,
    "Relaminarization of turbulent channel flow using traveling wave-like wall deformation,"
    Int. J. Heat Fluid Flow 35, 152-159 (2012).

  71. N. Kasagi, Y. Hasegawa, K. Fukagata, and K. Iwamoto,
    "Control of turbulent transport: Less friction and more heat transfer,"
    J. Heat Transfer 134, 031009 (2012).

  72. K. Higashi, H. Mamori, and K. Fukagata,
    "Simultaneous control for friction drag reduction and heat transfer augmentation by traveling wave-like blowing/suction,"
    Comput. Therm. Sci. 3, 521-530 (2011).

  73. K. Kakikura, K. Fukagata, and T. Hibiya,
    "System engineering analysis and optimization of a parabolic flight experiment for thermophysical property measurement under microgravity,"
    J. Jpn. Soc. Microgravity Appl. 28-2, S92-S99 (2011).

  74. Y. Kametani and K. Fukagata,
    "Direct numerical simulation of spatially developing turbulent boundary layer with uniform blowing or suction,"
    J. Fluid Mech. 681, 154-172 (2011).

  75. K. Fukagata, K. S. Furukawa, and T. Ushida,
    "Analysis of cell accumulation mechanism in a rotational culture system,"
    J. Mech. Med. Biol. 11, 407-421 (2011).

  76. J. Hœpffner, Y. Naka, and K. Fukagata,
    "Realizing turbulent statistics,"
    J. Fluid Mech. 676, 54-80 (2011).

  77. D. Kurashima, Y. Naka, K. Fukagata, and S. Obi,
    "Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive,"
    Int. J. Heat Fluid Flow 32, 567-574 (2011).

  78. T. Kawata, Y. Naka, K. Fukagata, and S. Obi,
    "Simultaneous measurement of velocity and fluctuating pressure in a turbulent wing-tip vortex using triple hot-film sensor and miniature total pressure probe,"
    Flow Turbul. Combust. 86, 419-437 (2011).

  79. H. Hasebe, Y. Naka, and K. Fukagata,
    "An attempt for suppression of wing-tip vortex using plasma actuators,"
    J. Fluid Sci. Technol. 6, 976-988 (2011).

  80. K. Fukagata, M. Kobayashi, and N. Kasagi,
    "On the friction drag reduction effect by a control of large-scale turbulent structures,"
    J. Fluid Sci. Technol. 5, 574-584 (2010).

  81. H. Mamori and K. Fukagata,
    "Consistent scheme for computation of Reynolds stress and turbulent kinetic energy budgets for energy-conservative finite difference method,"
    J. Comput. Sci. Technol. 4, 64-75 (2010).

  82. H. Mamori, K. Fukagata, and J. Hœpffner,
    "The phase relationship in laminar channel flow controlled by traveling wave-like blowing or suction,"
    Phys. Rev. E 81, 046304 (2010).

  83. Y. Naka, K. Tsuboi, Y. Kametani, K. Fukagata, and S. Obi,
    "Near-field development of a turbulent mixing layer periodically forced by a bimorph PVDF film actuator,"
    J. Fluid Sci. Technol. 5, 156-168 (2010).

  84. J. Hœpffner and K. Fukagata,
    "Pumping or drag reduction?"
    J. Fluid Mech. 635, 171-187 (2009).

  85. K. Fukagata, K. Sugiyama, and N. Kasagi,
    "On the lower bound of net driving power in controlled duct flows,"
    Physica D 238, 1082-1086 (2009).

  86. Y. Naka, S. Azegami, T. Kawata, K. Fukagata, and S. Obi,
    "Simultaneous measurement of velocity and pressure in a wing-tip vortex,"
    J. Fluid Sci. Technol. 4, 107-115 (2009).

  87. C. Chaktranond, K. Fukagata, and N. Kasagi,
    "Performance assessment and improvement of a split-and-recombine micromixer for immunomagnetic cell sorting,"
    J. Fluid Sci. Technol. 3, 1008-1019 (2008).

  88. K. Fukagata, S. Kern, P. Chatelain, P. Koumoutsakos, and N. Kasagi,
    "Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction,"
    J. Turbulence 9, N35, 1-17 (2008).

  89. M. Suzuki, N. Shikazono, K. Fukagata, and N. Kasagi,
    "Numerical analysis of coupled transport and reaction phenomena in an anode-supported flat-tube solid oxide fuel cell,"
    J. Power Sources 180, 29-40 (2008).

  90. K. Fukagata, N. Kasagi, P. Ua-arayaporn, and T. Himeno,
    "Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube,"
    Int. J. Heat Fluid Flow 28, 72-82 (2007).

  91. A. Mitsuishi, K. Fukagata, and N. Kasagi,
    "Near-field development of large-scale vortical structures in a controlled confined coaxial jet,"
    J. Turbul. 8, N23, 1-27 (2007).

  92. K. Fukagata, N. Kasagi, and P. Koumoutsakos,
    "A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces,"
    Phys. Fluids 18, 051703 (2006).
    Erratum: Phys. Fluids 18, 089901 (2006).

  93. K. Iwamoto, K. Fukagata, N. Kasagi, and Y. Suzuki,
    "Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers,"
    Phys. Fluids 17, 011702 (2005).

  94. K. Fukagata and N. Kasagi,
    "Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress,"
    Int. J. Heat Fluid Flow 25, 341-350 (2004).

  95. K. Fukagata, S. Zahrai, and F. H. Bark,
    "Dynamics of Brownian particles in a turbulent channel flow,"
    Heat Mass Transfer 40, 715-726 (2004).
    Errata: filefukagata-hmt04-errata.pdf

  96. K. Fukagata and N. Kasagi,
    "Drag reduction in turbulent pipe flow with feedback control applied partially to wall,"
    Int. J. Heat Fluid Flow 24, 480-490 (2003).

  97. K. Fukagata, K. Iwamoto, and N. Kasagi,
    "Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows,"
    Phys. Fluids 14, L73-L76 (2002).
    Details of derivation: filefukagata-pof02-detail.pdf

  98. K. Fukagata and N. Kasagi,
    "Highly energy-conservative finite difference method for the cylindrical coordinate system,"
    J. Comput. Phys. 181, 478-498 (2002).
    Errata: filefukagata-jcp02-errata.pdf

  99. K. Fukagata, S. Zahrai, S. Kondo, and F. H. Bark,
    "Anomalous velocity fluctuations in particulate turbulent channel flow,"
    Int. J. Multiphase Flow 27, 701-719 (2001).

  100. F. Gurniki, K. Fukagata, S. Zahrai, and F. H. Bark,
    "LES of turbulent channel flow of a binary electrolyte,"
    J. Appl. Electrochem. 30, 1335-1343 (2000).

  101. K. Fukagata, S. Zahrai, and F. H. Bark,
    "Force balance in a turbulent particulate channel flow,"
    Int. J. Multiphase Flow 24, 867-887 (1998).

マツハク

  1. トケテォノ ソホネ。、テ オネサフ。、ソシウ ケッニ。、
    。ヨ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソ、ヘム、、、ソヘ翕シアイベタゥ、ホサ、゚。ラ。、
    ニヒワオ。ウ」ウリイマタハクスクBハヤ 77, 659-671 (2011).

  2. セョホモ ニサア。、ソシウ ケッニ。、ヴフレ ソュアム。、
    。ヨツ邨ャフマヘホョケスツ、、ホタゥク讀ヒ、隍ヒ狃、トケウト羣コクイフ、ヒエリ、ケ、ク。ニ、。ラ。、
    ニヒワオ。ウ」ウリイマタハクスクBハヤ 75, 635-641 (2009).


イタ筍ヲチタ筍ソクヲオ貔メイ

アムハク

  1. K. Fukagata, K. Iwamoto, and Y. Hasegawa,
    "Turbulent drag reduction by streamwise traveling waves of wall-normal forcing,"
    Annu. Rev. Fluid Mech. 56 (2024 to appear).

  2. K. Fukagata,
    "Reduced order modeling of fluid flows using convolutional neural networks,"
    J. Fluid Sci. Technol. 18, JFST0002 (2023).

  3. M. Morimoto, K. Fukami, R. Maulik, R. Vinuesa, and K. Fukagata,
    Featured Research in CFD35: "Model-form uncertainty quantification in neural-network-based fluid-flow estimation,"
    Nagare - J. Jpn. Soc. Fluid Mech. 41, 89-92 (2022).

  4. K. Fukagata,
    "Towards quantum computing of turbulence,"
    Nat. Comput. Sci. 2, 68-69 (2022).

  5. T. Mitsumoji, Y. Sato, M. Ikeda, T. Sueki, and K. Fukagata,
    "Basic study on aerodynamic noise reduction techniques for a pantograph head using plasma actuators,"
    Quarterly Report of RTRI 55, 184-189 (2014).

  6. K. Fukagata,
    "Drag reduction by wavy surfaces,"
    J. Fluid Sci. Technol. 6, 2-13 (2011).

  7. N. Kasagi, Y. Suzuki, and K. Fukagata,
    "Microelectromechanical system-based feedback control of turbulence for skin friction reduction,"
    Annu. Rev. Fluid Mech. 41, 231-251 (2009).

  8. K. Fukagata,
    "Theoretical studies on friction drag reduction control with the aid of direct numerical simulation - A review,"
    J. Comput. Fluids Eng. 13-4, 96-106 (2008).

マツハク

  1. ツ酥サ ケタサヨ。、タ鯒ト ケク。、タミタ・ キ。、セセネ クセシ。、ソシウ ケッニ。、
    。フニテスク。ヘテフワクヲオ in CFD36。ァ。ヨDNS・ヌ。シ・ソ、ヘム、、、ハ、、オ。ウ」ウリスャ、ヒエ、ナ、ッホウサメイ霖ホョツョツャトヒ。、ホソョヘタュクセ蝪ラ。、
    、ハ、ャ、 42, 83-86 (2023).

  2. ソシウ ケッニ。、
    。ヨセ、゚ケ、゚・ヒ・蝪シ・鬣・ヘ・テ・ネ・。シ・ッ、ヘム、、、ソホョツホセ、ホト羮。クオイス、ネキ酊サセハソ萋遙ラ。、
    ニヒワノケゥウリイサ 47(3), 215-220 (2022)。・

  3. ソシウ ケッニ。、
    。ヨエチテナェ、ハホョ、セ、ヒツミ、ケ、オ。ウ」ウリスャ、ホアヘム。ラ。、
    ニヒワ・ャ・ケ・ソ。シ・モ・ウリイサ 50(3), 179-184 (2022)。・

  4. ソシウ ケッニ。、
    。ヨヘホョ、ホオ。ウ」ウリスャ、ネタゥク譯ラ。、
    ・ユ・。シ・ノ・ム・。シ・キ・ケ・ニ・ 52(6), 237-241 (2021)。・

  5. ソシウ ケッニ。、ソシクォ ウォ。、
    。ヨオ。ウ」ウリスャスフフ・筵ヌ・、ヘム、、、ソウラソキナェホョ、タゥク讀ヒク、ア、ニ。ラ。、
    ナチヌョ 60(253), 12-15 (2021)。・

  6. ソシウ ケッニ。、
    。ヨオ。ウ」ウリスャ、ホヘホョ、リ、ホアヘム。ラ。、
    ニヒワオ。ウ」ウリイサ 124(1232), 10-13 (2021).

  7. ネホアエヨ ツ醋蝪、ツ鄲セ ホホ。、ソシウ ケッニ。、ケ筝カ キヒサメ。、
    。フニテスク。ヘテフワクヲオ in ヌッイ2020。ァ。ヨソテヘエカナルシツクウ、ヒ、隍タセケ゚ソ蠶モ、ホイトタゥク貘ュイタマ。ラ。、
    、ハ、ャ、 39, 324-327 (2020).

  8. ニヌネケセ ヘ、イ。、ソシウ ケッニ。、
    。フニテスク。ヘテフワクヲオ in ヌッイ2020。ァ。ヨ・ヲ・ァ。シ・ヨ・゙・キ・セソハケヤヌネタゥク讀ヒ、隍ヘホョヒ狃、トケウト羣コクイフ、ホ・ム・鬣癸シ・ソーヘツクタュ。ラ。、
    、ハ、ャ、 39, 312-315 (2020).

  9. テ貭シ ツター。、ソシクォ ウォ。、ソシウ ケッニ。、
    。フニテスク。ヘテフワクヲオ in ヌッイ2020。ァ。ヨウャチリキソCNN・ェ。シ・ネ・ィ・・ウ。シ・タ、ヘム、、、ソホョ、セ、ホネタキチ・筍シ・ノ、ホテスミ。ラ。、
    、ハ、ャ、 39, 316-319 (2020).

  10. タ・タ ノノァ。、ソシウ ケッニ。、セセフ ホエ。、フ。ケツシ ツ。、
    。フニテスク。ヘ、筅ヲヌョ、ッ、ハ、、!? 、゙、タ、゙、タヌョ、、!! ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソ。ァ。ヨ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソクヲオ讀ホソハハ筍ラ。、
    、ハ、ャ、 39, 192-199 (2020).

  11. ソシウ ケッニ。、ソシクォ ウォ。、
    。ヨオ。ウ」ウリスャ、ヘム、、、ソヘホョ・モ・テ・ー・ヌ。シ・ソイタマ、ヒク、ア、ニ。ラ。、
    キラツャ、ネタゥク 59(8), 571-576 (2020).

  12. ソケヒワ セュタク。、ソシクォ ウォ。、トケテォタ ーナミ。、ツシナト ケ篷ヒ。、ツシセ ク。、ソシウ ケッニ。、
    。フニテスク。ヘテフワクヲオ in CFD33。ァ。ヨオ。ウ」ウリスャ、ヒエ、ナ、ッ・ヌ。シ・ソウネト・、ヒ、隍PIV 、ホタコナルクセ蝪ラ。、
    、ハ、ャ、 39, 84-87 (2020).

  13. ソシクォ ウォ。、ソシウ ケッニ。、ハソ ヒョノァ。、
    。ヨ・チ・罕ヘ・ヘホョ、ヒ、ェ、ア、オ。ウ」ウリスャ3シ。クオトカイチイタマ。ラ。、
    ニヒワオ。ウ」ウリイホョツホケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。ヨホョ、。ラ。、2020ヌッ2キケ, Art. 4 (2020)。・

  14. ソシクォ ウォ。、ソシウ ケッニ。、ハソ ヒョノァ。、
    。フニテスク。ヘテフワクヲオ in ヌッイ2019。ァ。ヨ2シ。クオホョ、セ、リ、ホオ。ウ」ウリスャトカイチ、ホアヘム。ラ。、
    、ハ、ャ、 38, 395-398 (2019).

  15. トケテォタ ーナミ。、ソシクォ ウォ。、ツシナト ケ篷ヒ。、ソシウ ケッニ。、
    。フニテスク。ヘテフワクヲオ in CFD32。ァ。ヨオ。ウ」ウリスャ、ヘム、、、ソア゚テシ、ホョ、、ホ・・、・ホ・・コソーヘツクタュ、ホヘスツャ。ラ。、
    、ハ、ャ、 38, 81-84 (2019).

  16. ケセニ」 キーサメ。、カ眸」 ヘ、ホシ。、ソシウ ケッニ。、ニチタ トセサメ。、
    。ヨーヘヘソ眇ミ、キタゥク讀ヒ、隍ヘ耄フヒ狃、トケウト羣コクイフ、ホシツクウナェトホフノセイチ。ラ。、
    ニヒワオ。ウ」ウリイホョツホケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。ヨホョ、。ラ。、2019ヌッ3キケ譯、Art. 3 (2019).

  17. ラ「タ サハ筍、ケセニ」 キーサメ。、カ眸」 ヘ、ホシ。、ソシウ ケッニ。、ニチタ トセサメ。、
    。ヨシニーソ眇ミ、キタゥク讀ヒ、隍ヘ耄フヒ狃、トケウト羣コ、ホノニカシツクウ。ラ。、
    ニヒワオ。ウ」ウリイホョツホケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。ヨホョ、。ラ。、2019ヌッ3キケ譯、Art. 4 (2019).

  18. エ莠エ ツ邏。、ニヌネケセ ヘ、イ。、ソシウ ケッニ。、
    。ヨWALE・筵ヌ・、ヘム、、、ソア゚エノニ簣ホョ、ホLES、ヒ、ェ、ア、ウハサメイチナル、ホアニカチ。ラ。、
    ニヒワオ。ウ」ウリイホョツホケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。ヨホョ、。ラ。、2019ヌッ3キケ譯、Art. 7 (2019).

  19. タ・タ ノノァ。、ソシウ ケッニ。、セセフ ホエ。、フ。ケツシ ツ。、ツ鄲セ トセハク。、
    。ヨ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソクヲオ豐 。チ5ヌッエヨ、ホウ霹ー、ネコ」ク螟ホナクヒセ。チ。ラ。、
    ニヒワオ。ウ」ウリイホョツホケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。ヨホョ、。ラ。、2019ヌッ2キケ譯、Art. 3 (2019).

  20. ソシウ ケッニ。、サウヒワ タソ。、エ萢ワ キー。、トケテォタ ヘホイ。、トヘクカ ホエヘオ。、ハ。ナ トセコネ。、シ ヘオフ鬘、タトフレ オチヒ。、
    。フニテスク。ヘテフワクヲオ in ヌッイ2018。ァ。ヨオ。ウ」ウリスャ、ヘム、、、ソヘホョ、ホニテトァテスミシヒ。、ホケステロ、ヒク、ア、ニ。ラ。、
    、ハ、ャ、 37, 524-527 (2018).

  21. クヘム ケ茖、テモナト スシ。、ヒフレ キヌキ。、アアナト ホエヌキ。、ソシウ ケッニ。、
    。ヨ・ム・・ソ・ー・鬣ユ、ホカホマイサ、ト羣コ、ケ、。ラ。、
    RRR 75, 16-19 (2018).

  22. ハニニサ ツイサ。、ソシウ ケッニ。、ニ」イャ クャツタマコ。、アナト テホフタ。、
    。ヨPM2.5、ホツモナナセツヨツャト熙ホ、ソ、皃ホハソケヤハソネトホウサメハャオ魘、ホソテヘ・キ・゚・螂。シ・キ・逾。ラ。、
    ニヒワオ。ウ」ウリイホョツホケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。ヨホョ、。ラ。、2018ヌッ4キケ譯、Art. 4 (2018).

  23. ソシウ ケッニ。、
    。ヨヒ狃、トケウト羣コ、シツクス、ケ、ヘホョタゥク讀ホ・筵ヌ・・・ー。ラ。、
    ・ソ。シ・ワオ。ウ」 45, 546-554 (2017).

  24. クヘム ケ茖、テモナト スシ。、ヒフレ キヌキ。、コエニ」 ヘエー。、アアナト ホエヌキ。、ソシウ ケッニ。、
    。ヨ・ム・・ソ・ー・鬣ユ、ホカホマチイサト羣コ、ヒエリ、ケ、コヌカ皃ホクヲオ貔カキ。ラ。、
    チイサタゥク 41(2) 64-67 (2017).

  25. エ萢ワ キー。、トケテォタ ヘホイ。、ハ。ナ トセコネ。、ソシウ ケッニ。、
    。ヨタムハャナェケアナシー、ヒエ、ナ、ッヘホョナチヌョ、ホイタマ、ネタゥク譯ラ。、
    ナチヌョ 55-231, 1-8 (2016).

  26. フ。ケツシ ツ。、タ・タ ノノァ。、ソシウ ケッニ。、セセフ ホエ。、タカソ ーテヒ。、ヌタミ ヘオヌキ。、
    セョニテスク。ァ。ヨ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソ、ホニーク。ァ1. 、マ、ク、皃ヒ。ラ。、
    ・ラ・鬣コ・゙。ヲウヒヘサケ邉リイサ 91-10, 648-650 (2015).

  27. ソシウ ケッニ。、タトフ ク。、ニ」ー ケァ鮓。、サウナト スモハ蝪、タミタ ソホ。、セセフ ホエ。、
    セョニテスク。ァ。ヨ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソ、ホニーク。ァ3. エチテナェ、ハホョ、セ、ヒツミ、ケ、シツクウナェ。ヲソテヘナェクヲオ譯ラ。、
    ・ラ・鬣コ・゙。ヲウヒヘサケ邉リイサ 91-10, 657-660 (2015).

  28. フ。ケツシ ツ。、タ・タ ノノァ。、ソシウ ケッニ。、セセフ ホエ。、タカソ ーテヒ。、ヌタミ ヘオヌキ。、
    セョニテスク。ァ。ヨ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソ、ホニーク。ァ6. 、゙、ネ、癸ラ。、
    ・ラ・鬣コ・゙。ヲウヒヘサケ邉リイサ 91-10, 671-673 (2015).

  29. ケ篶レ シ。、クナタ ケサメ。、ソシウ ケッニ。、オナト ツソイテサヨ。、鮓ナト ケフコ。、
    マ「コワケヨコツ。ァ。ヨケ簀ルハェヘサノキ网ネタクツホアナ。ハ4。ヒ-- ツ3セマ ホマウリサノキ网ヒ、隍コルヒヲアナ、ネアヘム 、ス、ホ2 --。ラ。、
    オ。ウ」、ホクヲオ 67-11, 957-967 (2015).

  30. ソシウ ケッニ。、エ萢ワ キー。、ヴフレ ソュアム。、
    マタハクゼシゼオュヌーイタ筍ァ。ヨハノ、ヒア隍ヲホョ、、ホヒ狃、トケウ、ヒツミ、ケ、・・、・ホ・・コアホマハャノロ、ホエヘソ。ラ。、
    、ハ、ャ、 32, 211-214 (2013).

  31. ソシウ ケッニ。、
    。ヨホョ、、ホタゥク貍ヒ。、ホハャホ爍ラ。、
    ニヒワオ。ウ」ウリイサ 115, 686-687 (2012).

  32. ソシウ ケッニ。、サウナト スモハ蝪、タミタ ソホ。、
    。ヨ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソ、ホエチテ、ネクヲオ貳ーク。ラ。、
    、ハ、ャ、 29, 243-250 (2010).

  33. ソシウ ケッニ。、
    ホオフ鄒゙シゼオュヌーイタ筍ァ。ヨハノ、ヒア隍ヲホョ、、ホヒ狃、トケウ、ヒツミ、ケ、・・、・ホ・・コアホマハャノロ、ホエヘソ。ラ。、
    、ハ、ャ、 27, 199-202 (2008).

  34. ソシウ ケッニ。、クタミ カヌノァ。、ヴフレ ソュアム。、
    。ヨニアシエハョホョ、ヒ、ェ、ア、ハェシチコョケ遉ホ・「・ッ・ニ・」・ヨタゥク譯ラ。、
    ニヒワオ。ウ」ウリイホョツホケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。ヨホョ、。ラ。、 2006ヌッ4キケ譯、Art. 5 (2006).

  35. ソシウ ケッニ。、
    。ヨエヌクヌオ、ニチヘホョ、ホソテヘ・キ・゚・螂。シ・キ・逾。ラ。、
    ニヒワホョツホホマウリイ ソテヘホョツホホマウリノフ躙ebイサ 11, 127-135 (2003).

  36. ヴフレ ソュアム。、ホフレ ヘコニ。、ソシウ ケッニ。、
    。ヨヘホョ、ホタゥク譯ラ。、
    ・ム・・ニ・」 18-2, 20-26 (2003).


スタメ

  1. クナタ ケサメ。、ソシウ ケッニ。、オナト ツソイテサヨ。、
    。ヨタイヌンヘワ、ヒ、隍ニケコニタク。ラ。、
    コルヒヲホナヒ。。ヲコニタクー衾ナ、ホ、ソ、皃ホヌンヘワ・キ・ケ・ニ・爍ハオェ・ホイャ。ヲシー ハヤ。ヒ, CMCスミネヌ。ハ2010。ヒ, pp. 120-127。・

  2. ソシウ ケッニ,
    。ヨセツヨ・ユ・」。シ・ノ・ミ・テ・ッタゥク譯ラ。、
    ヘホョケゥウリ・マ・・ノ・ヨ・テ・ッ。ハヴフレ。ヲイマツシ。ヲトケフ。ヲオワニ ハヤ。ヒ。、トォチメスナケ (2009), pp. 443-447.

  3. N. Kasagi and K. Fukagata,
    "The FIK identity and its implication for turbulent skin friction control,"
    Transition and Turbulence Control, edited by M. Gad-el-Hak and H. M. Tsai (World Scientific, Singapore, 2006), Chapter 10, pp. 297-324.


オェヘラ。ソニ篷・・ン。シ・ネ

  1. クヘム ケ, コエニ」 ヘエー, テモナト スシ, ケ簑ミ ノオラ, ヒフレ キヌキ, ソシウ ケッニ。、
    。ヨ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソ、ヒ、隍・ム・・ソ・ー・鬣ユスョツホ、ホカホマイサト羣コシヒ。、ホエチテク。ニ、。ラ。、
    ナエニサチクヲハケ 27-10, 11-16. (2013).

  2. K. Fukagata,
    "DNS code for turbulent channel flow," Fukagata Lab. Internal Textbook, No. FLIT-1201 (Fukagata Lab., Keio University, 2012), 76 pp. FLIT-1201.jpg

  3. K. Fukagata,
    "Development of DNS code for turbulent pipe flow,"
    THTLAB Internal Report, No. ILR-0104 (Turbulence and Heat Transfer Laboratory, The Univ. of Tokyo, 2001), 62pp.

  4. K. Fukagata and S. Zahrai,
    "Simulation of particle motion in a turbulent velocity field, part II,"
    ABB Corporate Research Technical Report 1996:107 (ABB Corporate Research, Västerås, 1996), 35pp., ISRN SECRC/B/TR-96/107E.

  5. K. Fukagata,
    "Simulation of particle motion in a turbulent velocity field, part I,"
    ABB Corporate Research Technical Report 1995:162 (ABB Corporate Research, Västerås, 1995), 20pp. ISRN SECRC/KB/TR-95/162E.


エャニャクタ

  1. S. Obi, K. Fukagata, M. Kameda, C. Kato, Y. Morinishi, Y. Murai, S. Watanabe, and M. Watanabe,
    "Preface (Special Issue of the AJK2019, ASME-JSME-KSME Joint Fluids Engineering Conference 2019),"
    J. Fluid Sci. Technol. 15, JFST0007 (2020).

  2. ソシウ ケッニ。、
    。ヨ・ィ・ヘ・・ョ。シサコカネ、ヒ、ェ、ア、オ。ウ」ウリスャ、リ、ホエツヤ。ラ。、
    ニヒワ・ャ・ケ・ソ。シ・モ・ウリイサ 47, 281 (2019).

  3. T. Yano, K. Abe, H. Ishikawa, and K. Fukagata,
    "Preface (Special Issue of the Ninth JSME-KSME Thermal and Fluids Engineering Conference (TFEC9)),"
    J. Fluid Sci. Technol. 13, JFST0011 (2018).

  4. K. Suga, K. Fukagata, K. Maruta, A. Miyara, and K. Takahashi,
    "Preface (Special Issue of the First Pacific Rim Thermal Engineering Conference (PRTEC2016))"
    J. Therm. Sci. Technol. 11, JTST0034 (2016)

  5. ク衄」 セエ。、ソシウ ケッニ。、
    。ヨ、ウ、ウ、゙、ヌヘ隍ソ。。ホョ、、ホタゥク譯。ニテスクケ貶ッエゥ、ヒコン、キ、ニ。ラ。、
    ニヒワオ。ウ」ウリイサ 115, 683 (2012).

  6. ソキセ ス゚サヒ。、ソシウ ケッニ。、セセクカ イスユ。、
    。ヨヌウセニクヲオ讀ホコヌチータ。。ニテスク、ホエイ隍ヒ、「、ソ、テ、ニ。ラ。、
    、ハ、ャ、 31, 331 (2012).

  7. タ・タ ノノァ。、セョフ クャニ。、ソシウ ケッニ。、
    。ヨテマオ袞ヌタアイハウリ、ヒ、ェ、ア、ホョツホクスセン」ア 。チテマオ衄篷ハヤ。チ ニテスク、ホエイ隍ヒ、「、ソ、テ、ニ。ラ。、
    、ハ、ャ、 30, 291-292 (2011).

  8. ソシウ ケッニ。、ソケタセ ヘホハソ。、
    。ヨテフワクヲオ in CFD24。。ニテスク、ホエイ隍ヒ、「、ソ、テ、ニ。ラ。、
    、ハ、ャ、 30, 61 (2011).

  9. M. Yamamoto, K. Fukagata, S. Obi, M. Suzuki, and M. Tanahashi,
    "Preface (Special Issue of 2nd International Workshops on Advances in Computational Mechanics -Advanced Turbulent Flow Simulation-),"
    J. Fluid Sci. Technol. 6, 1 (2011).

  10. ソシウ ケッニ。、タ・タ ノノァ。、タミタ ソホ。、
    。ヨヌョ、ッ、ハ、、!? ヌョ、、!! ・ラ・鬣コ・゙・「・ッ・チ・螂ィ。シ・ソ。。ニテスク、ホエイ隍ヒ、「、ソ、テ、ニ。ラ。、
    、ハ、ャ、 29, 241-242 (2010).


ハケオュサ。ソ、ス、ホツセ*1

  1. ソシウ ケッニ。、
    。ヨツ36イソテヘホョツホホマウリ・キ・・ン・ク・ヲ・猝ケ。ラ。、
    、ハ、ャ、 42, 50-51 (2023).

  2. ソシウ ケッニ。、テ貭シ ツター。、
    。ヨホョ、、ホシォコ゚、ハタゥク讀ヌセハ・ィ・ヘ・・ョ。シシメイ、フワサリ、ケ。ソクヲオ讀トフ、キ、ニタ、ウヲ、ネ、ト、ハ、ャ、。ラ。、
    。ヨスホ。ラ2021 SUMMER。、No. 311, 22 (2021).

  3. ナケカカ ク。、ソシウ ケッニ。、
    。ヨツ2イエトツタハソヘホヌョケゥウリイオト(PRTEC2019)ウォコナハケ。ラ。、
    ニヒワオ。ウ」ウリイヌョケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。、No. 90, June 2020 (2020).

  4. ソシウ ケッニ。、
    。ヨ15ヌッフワ、ギ、ィ、ソLAJームーイ。ラ。、
    ニヒワオ。ウ」ウリイサ 122(1202), 20-21 (2019).

  5. ソシウ ケッニ。、
    。ヨヘケゥウリノ・ロ。シ・爭レ。シ・ク、ホチエフフ・・ヒ・蝪シ・「・、ヒ、ト、、、ニ。ラ。、
    キトリ豬チスホツ邉リ ヘケゥウリノハ。、ツ67ケ, 6 (2018).

  6. ソシウ ケッニ。、
    。ヨテ邏ヨ、ネ、キ、ニソョヘ熙ケ、ウリタク、ソ、チ、ネカヲ、ヒクヲオ讀ヒホ螟爍ラ。、
    スルツ賚スネウリケサ。ヨチ盥トツ遉ク、。ラ。、3-4 (2018).

  7. ソシウ ケッニ。、エ萢ワ キー。、
    。ヨヌョホョツホホマウリハャフ、ホノクス猯萃スク。ラ。、
    ニヒワオ。ウ」ウリイサ 121(1196), 26 (2018).

  8. エンナト キー。、ソシウ ケッニ。、
    。ヨThe Ninth JSME-KSME Thermal and Fluids Engineering Conference (TFEC9) ウォコナハケ。ラ。、
    ニヒワオ。ウ」ウリイヌョケゥウリノフ逾ヒ・蝪シ・コ・・ソ。シ。、No. 84, April 2018 (2018).

  9. ーヒイ ヘウイツ。、タミー キテニ爍、ツ酘レ ースヌオ。、ノテ ヌスサメ。、ヌ゚ツシ ニニサヨ。、ソシウ ケッニ。、
    。ヨ・皈ォ・ク・逾ユ・。・、・ Vol. 2。ラ。、
    ニヒワオ。ウ」ウリイサ 121(1190), 30-32 (2018).

  10. ソシウ ケッニ。、セョフミトサ ス癸、
    。ヨイハフワイ」テヌキソニテハフケヨオチ。ハタ霤シサホ网ォ、魑リ、ヨオ。ウ」ケゥウリ。ヒ。ンキトリ豬チスホツ邉リヘケゥウリノオ。ウ」ケゥウリイハ、ヒ、ェ、ア、サ、゚。ン。ラ。、
    ニヒワオ。ウ」ウリイサ 113, 914-916 (2010).


ニテオ

  1. ケホゥウォネックヲオ賤。ソヘアァテ雹メカクヲオ豕ォネッオ。ケス。ハニチタ トセサメ。ヒ。、ウリケサヒ。ソヘキトリ豬チスホ。ハソシウ ケッニ。、カ眸」 ヘ、ホシ。、ケセニ」 キーサメ。、ラ「タ サハ筍ヒ。、
    。ヨオ、ホョタゥク戝テヨ。「ケメカオ。オレ、モオ、ホョタゥク賁ヒ。。ラ。、
    ニテエ2018-029486。、ニテウォ2019-142385, ニテオツ7012226ケ

*1 クナ、、、筅ホ、マサラ、、スミ、キ、ソス遉ヒキヌコワ、キ、゙、ケ。ト

Last-modified: 2023-06-03 (ナレ) 00:03:34 (5d)
Copyright © 2007-2023 Fukagata Lab., Keio University, All rights reserved.